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Tree-Parzen Estimators
for deterministic outcomes
for uncertain outcomes (our proposal)

Hyperparameters:
• Influence the learning process
• Are not optimized during the training of the ML algorithm

• should be specified before the training phase

• Complex domain (numeric, discrete, etc)
• Hyperparameter optimization (HPO) = hard!

• Number of layers
• Number of neurons
• Solver (SGD, ADAM)
• Activation function
• Learning rate

ML algorithm
input output

• Square meters
• Rooms 
• Age 

House price

HPO algorithm
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Mean performance

Performance = uncertain
• Different data to train/validate 

(bootstrapping, k-fold cv, …)
• Retraining if the ML algorithm has 

some (random) inner optimization
• Monte Carlo dropout (for DNN)

𝜆∗ = argmin
𝜆∈Λ

𝑉 𝑓 𝐴𝜆, 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛)

Optimal 
hyperparameter 
configuration

Validation protocol

Training dataset

The algorithm 𝐴 with its hyperparameters instantiated to a 
configuration 𝜆 is denoted by 𝐴𝜆

Performance measure

Hyperparameter optimization problem

Validation dataset

Goal of this research: 
• Data efficient search for an optimal configuration
• Account for performance uncertainty during the optimization
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Tree Parzen Estimators (TPE) algorithm*
Model the distribution of each input using KDE

Good observations

Bad observations

𝑃 𝑥∗ 𝑋, 𝑌 = ቊ
𝑙(𝑥) 𝑦 < 𝑦∗, 𝑥 ∈ 𝑿

𝑔(𝑥) 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒

𝑦∗ is some quantile 𝛾 of the observed 𝒀 values, so 
that 𝑝 𝑦 < 𝑦∗ = 𝛾

SAMPLE 𝑛𝑐  
candidates from 

𝑙(𝑥) 

SELECT 𝑥∗ that 

maximizes the ratio 
𝑙(𝑥)

𝑔(𝑥)

* Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. Advances in 

neural information processing systems, 24.

ESTIMATE DENSITIES  𝑙(𝑥) and 𝑔(𝑥) 
using all the observations and their 

probability of being “good” and “bad”

How to suggest a new hyperparameter 
configuration?

Tree Parzen Estimators (TPE) with uncertainty (our algorithm)
Model the distribution of each input using KDE

Are these 
points good?

D

A B
C

Each point has a probability 
of being good, and a 
probability of being bad  
• WEIGHT the importance 

of the points in 
estimating l(x) and g(x) 
using KDE in input space

KDE of the 
performance 
distribution 
observed for 
each point

Good observations

Bad observations
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How important is 
each point in 
estimating the 
distribution?

Experimental design
Binary classification problems (minimization of classification error)

HP Multilayer Perceptron (d=5)

max_iter ℤ 𝑈[10, 1000]

neurons ℤ 𝑈[5, 1000]

lr_init ℤ −U log [10−6, 10−1]

b1 ℝ log [10−7, 1]

b2 ℝ log [10−7, 1]

Classification problems

Dataset OpenML ID Features Instances

Balance scale 997 4 625

Optdigits 980 64 5620

Stock 841 9 950

Heart-statlog 53 13 270

Ilpd 41945 10 583

Algorithms setting

Initial design space 11𝑑 − 1 = 54

Replications to account for uncertainty (k in 
cross-validation protocol)

5

Iterations 50

Candidates to sample per iteration (𝑛𝑐) 2000

TPE(𝛾) 0.2

Macro-replications 10

Results
Accounting for performance uncertainty can lead to better HP configurations
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Concluding remarks

• Basic idea: TPE algorithm adjustment to account for performance uncertainty
• Weighted KDE: probability that a given HP configuration is “good” or “bad”

• Our proposal outperforms the original TPE (final result and/or search speed) 
• Interesting for settings with limited budget!

• Further fine-tuning required to get high-quality performance on datasets with probability of being good 
and bad very close (dataset 980)

Further research:
• Multi-objective extension
• Multivariate KDE

Thanks
Q & A
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